日韩欧洲精品无码AV,99国产午夜精品一区二区天美,精品久久免费一区二区三区四区,久久综合图区亚洲综合图区,久久久久亚洲AV免费观看,精子网久久国产精品,亚洲AⅤ无码一区二区二三区性色,亚洲精品国产电影,亚洲资源在线观看,婷婷五月丁香在线

  • 
    
  • <ul id="yy6ca"></ul>
  • <del id="yy6ca"></del>
    <ul id="yy6ca"></ul>
    <strike id="yy6ca"><menu id="yy6ca"></menu></strike>
    Hotline:400-880-1556

    English




    basic introduction

    Semiconductor light-emitting diodes (LEDs) have been widely used in indicator lights, signal lights, instrument displays, mobile phone backlights, car light sources, etc. White LED technology has also continued to develop, and LEDs have become more and more widely used in the field of lighting. In the past, there were no more comprehensive national and industry standards for LED testing. In production practice, only relative parameters can be used as the basis. Different manufacturers, users, and research institutions have been controversial about this, leading to the development of the domestic LED industry. Big impact.

    Optical performance measurement

    Luminous flux

    Method 1 Integrating sphere spectroradiometer

    Guideline:

    CIE84: 1989 "Measurement of Luminous Flux";

    IESNA LM79-08 "Electrical and photometric measurement of solid-state lighting products"

    Method 2 Distribution Photometer

    Guideline:

    CIE84: 1989 "Measurement of Luminous Flux";

    IESNA LM79-08 "Electrical and photometric measurement of solid-state lighting products"

    Test items:

    Beam angle        Light efficiency                Luminous flux

    Ring band         Spectral power distribution    Color difference    Peak wavelength

    Lumen maintenance      Color rendering index     Color coordinate        Color tolerance

    Light intensity distribution (light distribution curve)

    Method   Distribution Photometer

    Guideline:

    IESNA LM79-08 "Electrical and photometric measurement of solid-state lighting products"

    CIE 121: 1998 "Luminaire Photometry and Distribution Photometry"

    CIE 043: 1979 "Projected light intensity test"

    GB / T 9468 General requirements for photometric distribution of lamps

    GB / T 7002: 2008 Photometric test of floodlighting lamps

    Test items:

    Energy efficiency of lamps     Beam angle     Luminous intensity distribution of lamps     Brightness limit curve

    Estimated curve of indoor lamps     Equal intensity distribution curve     Total luminous flux     Ring band

    Plane iso-illuminance curve     Round iso-curve     Ballast Lumen Coefficient (BLF) Rectangular constant intensity curve

    Test Methods

    LED is a unipolar PN junction diode composed of semiconductor inorganic materials, and the relationship between voltage and current is called volt-ampere characteristic. LED electrical characteristics include forward current, forward voltage, reverse current, and reverse voltage. LEDs must be driven by a suitable current and voltage to work properly (as shown in Figure 1). The maximum allowable forward voltage, forward current, and reverse voltage and current of the LED can be obtained by testing the electrical characteristics of the LED. In addition, the optimal working electric power of the LED can also be determined.

    The test of LED electrical characteristics is generally carried out by the voltage and ammeter under the power supply of the corresponding constant current and constant voltage source.

    Optical characteristics test

    Similar to other light sources, the test of LED light characteristics mainly includes luminous flux, luminous efficiency, radiant flux, radiant efficiency, light intensity, light intensity distribution characteristics and spectral parameters.

    Luminous flux and efficiency

    There are two methods for measuring luminous flux, namely integrating sphere method and variable angle photometer method. The variable angle photometer method is the most accurate method for measuring luminous flux, but due to its longer time-consuming, the sphere method is generally used to test the luminous flux. There are two test structures in the existing integrating sphere method for measuring LED luminous flux. One is to place the tested LED at the center of the sphere, and the other is to place it on the wall of the sphere.

    Since the integrating sphere method is used to measure the luminous flux, the self-absorption of light by the light source will affect the test results. Therefore, it is often necessary to introduce auxiliary lights.

    After the luminous flux is measured, the luminous efficiency of the LED can be measured with an electrical parameter tester. The test methods of radiant flux and radiation efficiency are similar to the test of luminous flux and luminous efficiency.

    Light intensity and light intensity distribution characteristics

    The light intensity of the point light source is evenly distributed in all directions of the space, and the test results received by detectors with different receiving apertures at different distances will not change. However, due to the inconsistent light intensity distribution of LED, the test results vary with the test distance and detector aperture. Therefore, CIE-127 proposed two recommended test conditions, so that each LED under the same conditions for light intensity test and evaluation as shown in Figure 5. At present, the recommended test conditions of CIE-127 have been cited by various LED manufacturers and inspection agencies.

    Spectral parameters

    The spectral characteristic parameters of LED mainly include peak emission wavelength, spectral radiation bandwidth and spectral power distribution. The spectrum of a monochromatic LED is a single peak, and its characteristics are expressed in terms of peak wavelength and bandwidth, while the spectrum of a white LED is composed of multiple monochromatic spectra. The spectral characteristics of all LEDs can be represented by the spectral power distribution, the white LED spectral power distribution. And the chromaticity parameter can also be calculated from the spectral power distribution of the LED.

    The measurement of the spectral power distribution needs to be performed by splitting, which separates each color light from the mixed light for measurement. Generally, prisms and gratings can be used for splitting.

    Our advantage

    1. With a professional qualification and experienced expert technical team, we can provide you with professional consultation and services.

    2. Have advanced laboratory equipment to ensure the accuracy and reliability of test data.

    3. As a third-party testing and certification organization trusted by customers worldwide, we are your certificate of quality.


    Online consultation

    Online consultation

    Recommend
    • COC certification in Algeria

      COC certification in Algeria

      COC certification in Algeria is a mandatory certification for products exported to Algeria, ensuring that the products comply with the country\'s safety, quality, and technical standards. The certification process includes document review, product testing, and factory inspection. Products that pass certification can be legally sold in the local market, protecting consumer interests and promoting fair trade.

    • Saudi Arabia GCC Certification

      Saudi Arabia GCC Certification

      GCC certification is the abbreviation for Gulf Cooperation Council certification, which is a mandatory certification requirement for products entering the market in Saudi Arabia and other countries in the Gulf region.

    • Moroccan COC certification

      Moroccan COC certification

      The Moroccan government implements strict supervision on imported electronic devices, and COC certification is a mandatory requirement to ensure that products comply with local safety, quality, and environmental standards.

    LED photoelectric performance testing

    Semiconductor light-emitting diodes (LEDs) have been widely used in indicator lights, signal lights, instrument displays, mobile phone backlights, car light sources, etc. White LED technology has also continued to develop, and LEDs have become more and more widely used in the field of lighting.

    Get a quote
    久久精品国产亚洲精品| 国产精品一线二线三线| 国产人成91精品免费观看| 女厕厕露p撒尿八个少妇| av无码网址| 精品国产三级a∨在线无码| а√天堂8资源中文在线| 国产精品亚洲五月天高清| 精品人妻人人做人人爽夜夜爽| 日本道精品一区二区三区| 四虎成人免费视频在线播放| 国产精品jizz视频| 九九精品九九| 被男狂揉吃奶胸60分钟视频| 青青草97国产精品免费观看| 亚洲国产精品日韩专区av| 国产精品99久久久久久猫咪| 国产熟女高潮视频| 人妻av无码一区二区三区| 厨房掀裙子从后面进啪啪| 又爽又黄无遮挡高潮视频网站| 西西444www无码大胆| 成人在线观看国产| 天天爽夜夜爽8888视频精品| 在线精品国精品国产不卡| 九九视频国产| 一区二区免费在线视频| 亚洲欧美另类成人综合图片| 亚洲国产精品三级在线| 亚洲图亚洲色成人综合网| 久久狠狠色噜噜狠狠狠狠97| 亚洲午夜久久久久妓女影院| 伊人久久大香线蕉AV色| 中文字幕日韩精品无码内射| 国产仑乱无码内谢| 精品国产亚洲av麻豆| 亚洲乱码精品久久久久..| 日韩亚洲av人人夜夜澡人人爽| 国产成+人欧美+综合在线观看| 欧美亚洲国产精品久久高清| 亚洲国产精品无码av|